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Abstract. We study realizations ofpolynomialdeformations of thesl(2,<)-Lie algebra in terms
of differential operators strongly related to bosonic operators. We also distinguish their finite- and
infinite-dimensional representations. The linear, quadratic and cubic cases are explicitly visited but
the method works for arbitrary degrees in the polynomial functions. Multi-boson Hamiltonians are
studied in the context of these ‘nonlinear’ Lie algebras and some examples dealing withquantum
opticsare pointed out.

1. Introduction

Lie groups and algebras [1] are of great importance in quantum physics [2]. In particular,
they are associated with symmetry properties of physical systems and always improve the
understanding of many applications. In fact, such developments are mainly based onlinear Lie
algebras, but it has become increasingly evident that there is no physical reason for symmetries
to be only linear ones, leading to the observation that Lie theory may therefore be too restrictive.
Very recent studies have visited important classes ofnonlinearsymmetries. Among these, let
us only mention the nonlinear finiteW -symmetries [3] described bynonlinear Lie algebrasthat
we define as ‘generalizations of ordinary Lie algebras containing different order products of the
generators on the right-hand side of the defining brackets without violating Jacobi identities’
[4]. Another recent approach [5, 6] has considered nonlinear angular momentum theories
fundamentally developed from nonlinear extensions of the (real formsl(2,<) of the) complex
Lie–Cartan algebraA1. These two contents [3, 5, 6] are not independent [7] and cover an
important set of contributions on the correspondingrepresentationsof nonlinear Lie algebras
[4–14] where, more particularly,quadratic and cubic nonlinearities have been extensively
handled.

The main purpose of this paper is to discuss and put forward possible realizations of
nonlinear algebras bydifferentialoperators, such representations also being of primary interest
in connection with physical applications described by typical quantum Hamiltonians. As an
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example, we choose to studypolynomialdeformations of the linearsl(2,<)-algebra written
in the form

[J0, J±] = ±J± (1.1)

[J+, J−] = P(J0) (1.2)

where, as usual,J± are the well known raising (+) and lowering (−) operators (physically
important in the angular momentum theory [15]) andJ0 the diagonal one,P(J0) being a
polynomial function ofJ0 with a generally finite degree1. Particular nonlinearsl(2,<)-
algebras have already characterized physical applications in quantum mechanics [3] but also in
Yang–Mills-type gauge theories, inverse scattering, conformal field theories [16, 17], quantum
optics [18, 19], etc.

The interest of realizations in terms of linear differential operators is evidently stressed by
the fact that position and momentum operators are strongly related to linear combinations of
(harmonic) oscillator creation(a†) and annihilation (a) operators so that the so-calledbosonic
realizations of nonlinear Lie algebras appear as very rich information. Let us here only recall the
Heisenberg algebra characterized by the nonzero commutation relation (in a one-dimensional
space) [

d

dx
, x

]
= 1 (1.3)

equivalent to the oscillator algebra[
a, a†

] = 1 (1.4)

with the corresponding number operator given here by the dilation operator

D ≡ x d

dx
. (1.5)

Such bosonic representations have already been studied for a long time in connection with
(linear) Lie algebras [20, 21] but we want to tackle nonlinear ones as already mentioned.

The contents are then distributed as follows. In section 2, we propose a differential
realization of the three generators(J±, J0) satisfying the typical commutation relations
(1.1) and (1.2) and we discuss three specific polynomial contexts: the (trivial) linear case
(section 2.1), the quadratic context (section 2.2) which is a first nontrivial (nonlinear) case
with several physical motivations [4, 8, 10–13] and the cubic case (section 2.3), another specific
finiteW -algebra once again very well visited [5–7, 9, 13, 22, 23] in connection with different
physical applications. An important discussion will also take place in that section: we want to
distinguish the possiblefinite-dimensionalrepresentations of the different algebras. Moreover,
we will only be interested in realizations which could be handled in the future, formal ones then
being discarded. In section 3, as an application, we visit families of multi-boson Hamiltonians
[19] and point out some of them admitting typically such nonlinear Lie algebras as spectrum
generating algebras.

Our units are taken with the constant ¯h equal to unity.

2. Differential realizations of the generators

Let us realize the nonlinear algebra (1.1), (1.2) in terms of differential operators depending on
a real variablex. Such commutation relations suggest that these operators have the following
forms:

J+ = xNF(D) J− = G(D) dN

dxN
J0 = 1

N
(D + c) (2.1)
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wherec is a constant,D is given by equation (1.5) andN = 1, 2, 3, . . .. Besides the starting
property (1.3), let us mention the following identities and notations which are very useful in
order to manipulate the above operators:

[D, xN ] = N xN
[

dN

dxN
,D

]
= N dN

dxN
(2.2)

and

dN

dxN
xN =

N∏
j=1

(D + j) = (D +N)!

D!
(2.3)

xN
dN

dxN
=

N−1∏
j=0

(D − j) = D!

(D −N)! . (2.4)

If the relations (1.1) are easily satisfied, the one given in equation (1.2) asks for a general
constraint written as

F(D −N)G(D −N) D!

(D −N)! − F(D)G(D)
(D +N)!

D!
= P

(
1

N
(D + c)

)
. (2.5)

If P(J0) in equation (1.2) is a polynomial of degree1 in J0, we evidently should have
1 = degD(FG) +N − 1.

Here we want to point out that the following transformation

Ĵ+ = J+U Ĵ− = U−1J− Ĵ0 = J0 (2.6)

defines an automorphism of the realization (2.1) ifU is a function ofD only. Such an
automorphism allows us to simplify the functionsF(D) and (or)G(D). In the following,
we exploit this freedom without loss of generality. It is thus understood that all the realizations
explicitly presented here will be valid up to an automorphism of the form (2.6). So, let us fix
our choice on

G(D) = 1 (2.7)

in the constraint (2.5) and let us apply it to specific cases which are particularly meaningful
in connection with physical applications [3, 4, 16, 17]: we want to successively treat the three
cases of the (linear) algebrasl(2,<) and the (nonlinear) quadratic and cubic deformations of
this structure.

2.1. The linear algebrasl(2,<)
This case corresponds to the well known example where

P(J0) = 2J0 = 2

N
(D + c) (2.8)

subtending all the very important consequences of the angular momentum theory [15] and its
finite-dimensional representations but dealing with a specific basis other than the one in which
we are interested here. Let us also mention a recent study [21] on this case which can be
strongly related to ours up to specific periodic conditions imposed in that work [21]. Here the
functionF(D) is chosen as

F(D) = − D!

N2(D +N)!
(D + λ1)(D + λ2) (2.9)

whereλ1 andλ2 arex-independent parameters. The constraint (2.5) with the functions (2.7)
and (2.9) leads to

λ1 + λ2 = 2c +N
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so that in terms of a single parameterλ [21] we get

λ1 = c +
N

2
+ λ and λ2 = c +

N

2
− λ. (2.10)

Then the discussion of the functionF(D) ≡ (2.9) starts with differentN -values but by limiting
ourselves to nonsingular realizations of the three generators (2.1).

Here, only the valuesN = 1, 2 are admissible ones in that sense and we immediately get
that, forN = 1,

λ = ±( 1
2 − c)⇒ F(D) = −(D + 2c) (2.11)

and, forN = 2,

λ = ± 1
2 c = 1

2 ⇒ F(D) = − 1
4. (2.12)

Let us now give these explicit realizations in the two cases: we respectively have

J+ = −x
(
x

d

dx
+ 2c

)
J− = d

dx
J0 = x d

dx
+ c (2.13)

and

J+ = −x
2

4
J− = d2

dx2 J0 = 1

2

(
x

d

dx
+

1

2

)
. (2.14)

Let us also point out that, if we ask for finite-dimensional representations, we have to
considerP(n) (the(n+ 1)-dimensional vector space of polynomials of degree at mostn in the
x-variable) and to preserve it under the action of the generatorJ+ in particular. This requires,
in particular, that

J+x
n = F(n)xn+N = 0 (2.15)

and thus that

F(n) = F(n− 1) = · · · = F(n−N + 1) = 0. (2.16)

Only the caseN = 1 with c = − n
2 is permitted, the corresponding generators (2.13) being

already extensively used in the construction of quasi-exactly solvable equations [24, 25].

2.2. The quadratic algebra

If we require (with arbitraryαi , i = 1, 2, 3 up toα3 6= 0)

P(J0) = α1 + α2J0 + α3J
2
0 (2.17)

we are concerned with an already well-visited nonlinear algebra [8, 13] with specific physical
interests [4] ifα1 = 0, α2 = 2, α3 = 4α or with aW(2)

3 -algebra [3] ifα2 = 0 andα3 > 0. Let
us apply our considerations and search for functions

F(D) = −d D!

(D +N)!
(D + λ1)(D + λ2)(D + λ3) (2.18)

satisfying the condition (2.5) with the entries (2.7) and (2.17). This leads to the information

d = α3

3N3
λ1 + λ2 + λ3 = 3Nα2

2α3
+ 3c +

3N

2

λ1λ2 + λ1λ3 + λ2λ3 = N2

2
+ 3cN +

3N2α2

2α3
+

3Ncα2

α3
+ 3c2 + 3N2α1

α3
.

(2.19)
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Due to the specific form of our functions (2.18), we have only three admissible values
N = 1, 2, 3. We get forN = 1

d = α3

3
λ1 = 1 λ2 = 3

2
c +

1

4
+

3

4

α2

α3
+
ε

2

λ3 = 3

2
c +

1

4
+

3

4

α2

α3
− ε

2
(2.20)

ε =
(
−3c2 + 3c +

1

4
+

9

4

α2
2

α2
3

− α2

α3

(
3

2
− 3c

)
− 12

α1

α3

)1
2

so that the corresponding differential realization is

J0 = D + c J− = d

dx
J+ = −α3

3
x(D + λ2)(D + λ3). (2.21)

It will correspond to finite-dimensional representations of dimension(n + 1) iff λ2 = −n or
λ3 = −n.

ForN = 2 we have

d = α3

24
λ1 = 1 λ2 = 2 λ3 = 3

(
c +

α2

α3

)
(2.22)

and the realization writes

J0 = 1

2
(D + c) J− = d2

dx2 J+ = −α3

24
x2

(
D + 3c + 3

α2

α3

)
. (2.23)

leading to infinite-dimensional representations only.
Finally, forN = 3, we have

d = α3

81
λ1 = 1 λ2 = 2 λ3 = 3

α2

α3
= −2

3
c +

1

3

α1

α3
= 1

9
c2 − 1

9
c +

2

27

(2.24)

giving, once again, infinite-dimensional representations through the differential realization

J0 = 1

3
(D + c) J− = d3

dx3 J+ = −α3

81
x3. (2.25)

Let us end this section by mentioning that the realizations and representations of the
quadraticalgebra [4] characterized by

P(J0) = 2J0 + 4αJ 2
0 (2.26)

are readily obtained by fixing theαi as already specified.

2.3. The cubic or Higgs algebra

The Higgs algebra [22] has also been intensively exploited up till now, in connection with
eitherspecific models [13, 18, 22, 23]or through technical relations withW -algebras [3, 7] as
well as with the study of its irreducible representations [5, 6, 9]. Here it is characterized by the
polynomial function

P(J0) = 2J0 + 8βJ 3
0 (2.27)

β(6= 0) being very often interpreted as a deformation parameter. The functionsF(D)

corresponding to the previous expressions (2.9) and (2.18) take the form

F(D) = −f D!

(D +N)!
(D + λ1)(D + λ2)(D + λ3)(D + λ4). (2.28)
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We get the information

f = 2β

N4
λ1 + λ2 + λ3 + λ4 = 4c + 2N

λ1λ2 + λ1λ3 + λ2λ3 + λ1λ4 + λ2λ4 + λ3λ4 = N2 + 6cN + 6c2 +
N2

2β

λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = 2cN2 + 6c2N + 4c3 +
cN2

β
+

1

2β
N3

(2.29)

and have to discuss the casesN = 1, 2, 3 and 4. Here are the results forN = 1:

λ1 = 1 λ2 = 1

2
+ c +

1

2

√
1 + 4c − 4c2 − 2

β

λ3 = 1

2
+ c − 1

2

√
1 + 4c − 4c2 − 2

β
λ4 = 2c,

(2.30)

N = 2:

λ1 = 1 λ2 = 2 (2.31)

if c = 1

2
λ3 = 3

2
+

1

2

√
7− 8

β
λ4 = 3

2
− 1

2

√
7− 8

β
(2.32)

or c = 1

2
+

1

2

√
3− 4

β
λ3 = 1 +

√
3− 4

β
λ4 = 2 +

√
3− 4

β
(2.33)

or c = 1

2
− 1

2

√
3− 4

β
λ3 = 1−

√
3− 4

β
λ4 = 2−

√
3− 4

β
, (2.34)

N = 3:

λ1 = 1 λ2 = 2 λ3 = 3 λ4 = 4c (2.35)

if c = 0⇒ λ4 = 0 β = 9
4 (2.36)

or c = 1
2 ⇒ λ4 = 2 β = 9

7 (2.37)

or c = 1⇒ λ4 = 4 β = 9
4, (2.38)

N = 4:

λ1 = 1 λ2 = 2 λ3 = 3 λ4 = 4
c = 1

2 β = 16
11.

(2.39)

Finite-dimensional representations are only possible forN = 1 and 2. IfN = 1, λ1 = 1 and
λ2 = −n are fixed butλ3 andλ4 can take three different sets of values in correspondence with
well definite values ofc as follows:

if c = −n
2

λ3 = 1

2
− n

2
+
R1

2
λ4 = 1

2
− n

2
− R1

2
(2.40)

with

R1 =
(

1− 2n− n2 − 2

β

)1/2

(2.41)

if c = −n
2

+
1

2
R2 λ3 = −n +R2 λ4 = 1 +R2 (2.42)
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with

R2 =
(
−n2 − 2n− 1

β

)1/2

(2.43)

if c = −n
2
− 1

2
R2 λ3 = −n− R2 λ4 = 1− R2. (2.44)

Let us point out that these three families correspond to the three ones obtained in the angular
momentum basis [5] associated withn = 2j .

If N = 2,λ1 = 1,λ2 = 2 andλ3 = −n, λ4 = −n + 1 are determined so that we get fixed
values forc andβ given by

c = −n
2

β = − 4

n2 + 2n− 2
(2.45)

leading to supplementary representations recently obtained in [6].
The method developed here can evidently be applied to any degree of nonlinearities in the

polynomials characterizing equation (1.2) depending on specific questions and applications we
want to consider. In conclusion of this section, let us consider theq-deformationUq(sl(2,<))
of sl(2,<) which corresponds to the commutation relation (1.2) written on the form

[J+, J−] = [2J0] (2.46)

where the bracket refers to the usual notation [26]

[x] = qx − q−x
q − q−1

q = eγ (2.47)

leading to

[2J0] =
[

2

N
(D + c)

]
= 1

shγ
sh

2γ

N
(D + c) (2.48)

whereγ characterizes the deformation parameter of thisquantumalgebra. In our differential
realization (2.1) with the condition (2.7), the new functionsF(D) take the form

F(D) = − 1

2sh2 γ

D!

(D +N)!
ch

(
2γ

N
(D + c) + γ

)
(2.49)

also rewritten [27] as

F(D) = − 1

2sh2γ

D!

(D +N)!

∞∏
k=1

(
1 +

(
2γ (2D + 2c +N

N(2k + 1)π

)2
)
. (2.50)

No admissible cases can thus be discussed and all the representations are infinite-dimensional
(as expected),c still being a free parameter.

3. Some examples from quantum optics

A very recent result [18] concerning a location of fundamental supersymmetry [28] in multi-
boson Hamiltonians [19] suggests to learn if our differential approach can be useful through
the exploitation of nonlinear Lie algebras seen as spectrum generating algebras [29] of these
Hamiltonians as it was the case in quantum optics in particular.

We thus propose to consider the following family of Karassiov–Klimov Hamiltonians [19]
given by

H = ω1a
†
1a1 + ω2a

†
2a2 + g(a†

1)
sar2 + ḡas1(a

†
2)
r (3.1)
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where 06 r 6 s, ω1 andω2 refer to angular frequencies of twoindependentharmonic
oscillators characterized by annihilation (a1, a2) and creation (a†

1, a
†
2) operators verifying the

usual Heisenberg relations (1.4).
With the definitions

R0 ≡ 1

r + s
(ra

†
1a1 + sa†

2a2) = 1

r + s
(rN1 + sN2) (3.2)

J0 ≡ 1

r + s
(a

†
1a1− a†

2a2) J+ ≡ (a†
1)
sar2 J− = as1(a†

2)
r (3.3)

the Hamiltonian (3.1) becomes

H = (ω1 + ω2)R0 + (ω1s − ω2r)J0 + gJ+ + ḡJ− (3.4)

and we already notice that

[R0, J0] = [R0, J±] = 0 [J0, J±] = ±J± (3.5)

for arbitrary values ofr ands. The Hamiltonian (3.1) suggests an infinite-dimensional basis
{|n1, n2〉 n1, n2 = 0, 1, 2, . . .} for which the eigenvalues ofR0 (noted byj in the following)
are of the formj = (rn1 + sn2)/(r + s).

3.1. Towards the (cubic) Higgs algebra

In connection with the results [18] enhancing the Higgs algebra as a spectrum generating
algebra of the Hamiltonian (3.4), we have to add to equation (3.5) the requirement that the
commutator [J+, J−] is up to a renormalization ofJ±, of the form (1.2) with (2.27). It was
realized in [18] that this is possible only forr = s = 2. Here the commutator reads

[J+, J−] = −64J 3
0 + 8J0(2R

2
0 + 2R0 − 1). (3.6)

A comparison of (2.27) with (3.6) further indicates that the parameterβ should be of the form

β = − 4

4j2 + 4j − 2
j = 0, 1

2, 1, . . . (3.7)

which, we note in passing, is very similar to the condition (2.45) obtained in our classification
of finite-dimensional representations of the Higgs algebra.

After calculations, one can show that, out of the four casesN = 1, 2, 3, 4, only theN = 1-
andN = 2-contexts (see (2.30)–(2.34)) are possible.

We first discuss the three solutions associated with the contextwhenN = 2:

if c = 1
2 λ3 = 3

2 + 1
2(8j

2 + 8j + 3)
1
2 λ4 = 3− λ3 (3.8)

we have

J0 = 1

2

(
D +

1

2

)
J− = d2

dx2 J+ = x2(D + λ3)(D + 3− λ3) (3.9)

if c = j + 1 λ3 = 2j + 2 λ4 = 2j + 3 (3.10)

we obtain

J0 = 1

2
(D + j + 1) J− = d2

dx2 J+ = x2(D + 2j + 2)(D + 2j + 3) (3.11)

if c = −j λ3 = −2j λ4 = −2j + 1 (3.12)

we get

J0 = 1

2
(D − j) J− = d2

dx2 J+ = x2(D − 2j)(D − 2j + 1). (3.13)



On realizations of ‘nonlinear’ Lie algebras 2799

Only the realization (3.13)—which exactly corresponds to the discussion leading to eqs.
(2.45)—is of finite dimension while those given by equations (3.9) and (3.11) are infinite-
dimensional ones.

Let us now insert such realizations inside the Hamiltonians (3.4) with theidealconditions
ω1 = ω2 = ω, r = s = 2 andg = ḡ in order to determine if the above three contexts are or are
not typical ones of thelinear algebrasl(2,<) or of powers of its generators already obtained
in equations (2.13) and (2.14).

With the finite-dimensional realization (3.13), we readily find the corresponding
Hamiltonian of the form

H = 2ωj + g(1 +x4)
d2

dx2 + 2(1− 2j)gx3 d

dx
+ 2j (2j − 1)gx2. (3.14)

The generatorsJ± in (3.13) are nothing else but thesecondpower of the correspondinglinear
sl(2,<)-generators (2.13). The Higgsand sl(2,<) algebras are simultaneously spectrum
generating algebras of this application developed in a(2j +1)-dimensional space. This context
exactly corresponds to the Karassiov–Klimov model and its deduced supersymmetric features
[18]: the double degeneracy of the energy eigenvalues is clearly explained here through the
above powers of the linearsl(2,<)-generators as well as the possible construction of two
supercharges [30].

Up to the fact that the realization is infinite dimensional, the results (3.10) and (3.11) lead
once again to the conclusion that we are dealing with second powers of the generators of the
linearsl(2,<)-algebra, this context being characterized by the Hamiltonian

H = 2ωj + g(1 +x4)
d2

dx2 + (4j + 6)gx3 d

dx
+ (4j2 + 10j + 6)gx2. (3.15)

The third case corresponding to equations (3.8) and (3.9) is more interesting. Indeed, we
get the Hamiltonian

H = 2ωj + g(1 +x4)
d2

dx2 + 4gx3 d

dx
−
(

2j2 + 2j − 3

2

)
gx2. (3.16)

Here we notice that our raising operatorJ+ cannot be related to the generators of the linear
sl(2,<) algebra. Such a family of applications is thus characterized by the (cubic) Higgs
algebra seen as the spectrum generating algebra of interest, this context being typical once again
of infinite-dimensional realizations. Moreover, let us point out that this Hamiltonian (3.16) is
a Hermitean operator while the previous expressions (3.14) and (3.15) were not.

The above discussion can evidently be completed by theN = 1-context through the
values (2.26) withβ given once again by equation (3.7). Here also, we have found (finite-
or infinite-dimensional) realizations entering a (non-Hermitean) Hamiltonian admitting the
Higgs algebra as spectrum generating algebra without any connection with the linear case or
its powers. It reads

H = 2ωj + 16gx4 d3

dx3 + 64g(c + 1)x3 d2

dx2 + g

(
1 + 16

(
6c2 + 6c − 1

2
j2 − 1

2
j +

9

4

)
x2

)
d

dx

+32gc(2c2 − 1
2j

2 − 1
2j + 1

4)x (3.17)

and we notice that it includes third orders of derivatives as well as complex energies so that it
is not appealing in connection with physical applications.

In conclusion of this section, let us point out that the above discussion gives us some
academicresults ensuring the role of spectrum generating algebras played by the Higgs algebra
in the models characterized by the Hamiltonians (3.14)–(3.17) but, through their explicit forms,
we immediately see that such Hamiltonians cannot lead us, in the infinite-dimensional cases,
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to Schr̈odinger-like equations which are easy to handle. For such reasons we want to exploit
another Hamiltonian (3.4) as given in the following section.

3.2. Towards the quadratic algebra

Instead ofr = s = 2, let us study the relations (3.1)–(3.5) whenr = 1, s = 2, resulting in the
Hamiltonian

H = (ω1 + ω2)R0 + (2ω1− ω2)J0 + gJ+ + ḡJ− (3.18)

J0 = 1
3(N1−N2) R0 = 1

3(N1 + 2N2). (3.19)

Here the supplementary commutation relation becomes

[J+, J−] = P(J0) = 12J 2
0 − 3R0(R0 + 1) (3.20)

so that we have to consider the polynomial (2.17) for

α1 = −3j (j + 1) α2 = 0 α3 = 12. (3.21)

Let us stress that this quadratic algebra is thus aW
(2)
3 -algebra [3] of special interest, appearing

here, in connection withquantum optical models.
After calculations, it appears (as for section 2.2) that theN = 3-context is impossible but

the othersN = 2 andN = 1 are possible and lead to three different differential realizations.
WhenN = 2,
if c = −j , we get

J0 = 1

2
(D − j) J− = d2

dx2 J+ = −1

2
x2(D − 3j) (3.22)

and if c = j + 1, we obtain

J0 = 1

2
(D + j + 1) J− = d2

dx2 J+ = −1

2
x2(D + 3j + 3). (3.23)

In the caseN = 1, the parameterc is arbitrary and we get

J0 = D + c J− = d

dx
J+ = −4x

(
D2 +

(
3c +

1

2

)
D + 3c2 − 3j2

4
− 3j

4

)
.

(3.24)

Choosing againω1 = ω2 = ω andg = ḡ, the Hamiltonian (3.18) leads to three specific
models in correspondence with the choices (3.22)–(3.24). We respectively get

H1 = 3

2
ωj + g

d2

dx2 +
1

2
(ωx − gx3)

d

dx
+

3

2
gjx2 (3.25)

H2 = 1

2
ω(1 + 5j) + g

d2

dx2 +
1

2
(ωx − gx3)

d

dx
− 1

2
g(3j + 3)x2 (3.26)

and

H3 = ω(c + 2j)− 4gx3 d2

dx2 +

(
g + ωx − 4g

(
3c +

3

2

)
x2

)
d

dx

−4g

(
3c2 − 3j2

4
− 3j

4

)
x. (3.27)

None of these Hamiltonians is Hermitean butH1 andH2 arePT -invariant so that they have real
spectra [31]. This eliminatesH3 for evident reasons and we have to enlighten the characteristics
of H1 andH2 in order to determinetheHamiltonian which has to play the interesting role in
quantum optics.
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Let usfirst establish through conventional quantum mechanical methods that the stationary
Schr̈odinger equation corresponding toH1 is of the form(

−1

2

d2

dx2 + V1(x)

)
ψ(x) = Eg−1ψ(x) (3.28)

with

V1(x) = 1

32
x6− ω

16g
x4 +

(
ω2

32g2
− 3j

4
− 3

8

)
x2 − ω

4g

(
3j − 1

2

)
(3.29)

while the one corresponding toH2 is characterized by the potential

V2(x) = 1

32
x6− ω

16g
x4 +

(
ω2

32g2
+

3j

4
+

3

8

)
x2 − ω

4g

(
5j +

1

2

)
. (3.30)

We thus recover two particular forms of the famous potential of degree six, typical of quasi-
exactly solvable equations [24, 25, 32] now appearing in quantum optics. Due to these results
we are able to calculate a certain number of eigenvalues of the spectrum as well as their
eigenfunctions.

More precisely, by applying the techniques of [25, 32] to the sextic oscillators above,
we notice that only the potentialV1(x) gives a quasi-exactly solvable Schrödinger equation
leading to the existence of [3j

2 ] + 1 exact solutions (where [y] refers to the entire part ofy) and
corresponding to real energy eigenvalues whose first ones are

j = 0 E0 = 0 j = 1
3 E1 = ω j = 2

3 E2 = 3
2ω ± 1

2(ω
2 + 8g2)

1
2

j = 1 E3 = 5
2ω ± 1

2(ω
2 + 24g2)

1
2 etc. . . . (3.31)

This leads to the conclusion that, with the differential realizations of the generators of the
quadratic Lie algebra (3.20), the Schrödinger equation (3.28) with (3.29) is the only one
associated with a realistic quantum optical model. As asecondpoint, we would also like to
comment about the supersymmetric properties of the Hamiltonian obtained above. For this
purpose, let us consider (3.25) forj = 0 and, thus, for the eigenvalueE0 = 0, it simplifies to

H1 = d2

dx2 −
1

16
x6 +

ω

8g
x4 +

(
3

4
− ω2

16g2

)
x2 − ω

4g
. (3.32)

Interestingly, this operator can be expressed in terms of a superpotential [28]W1(x)

H+ = H1 = d2

dx2 −W 2
1 −

dW1

dx
(3.33)

with

W1(x) = −1

4
x3 +

ω

4g
x. (3.34)

The superpartnerH− of (3.33) is given [28] by

H− = d2

dx2 −W 2
1 +

dW1

dx
(3.35)

and surprisingly appears to be related toH2:

H− = H2|n=0. (3.36)

It shows that its nonquasi-exactly solvable context is strongly related to themissingfundamental
energyE0 = 0 and that it does not correspond to the expected results of the quantum optical
model. Let us also point out that these superpartners indicate that (only) forn = 0, we describe
here anexactsupersymmetry [28].
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A final third property that we want to stress is related to the realization (2.13) of the
linear sl(2,<): we have also noticed that the interesting Hamiltonian (3.25) is once again a
simple function of the three generators given in equation (2.13) but expressed in terms of a new
variablez = x2. We thus conclude that the linearsl(2,<) as well as quadratic algebras we are
considering (this latest way being, by far, more straightforward) are simultaneously spectrum
generating algebras for the model under study. Withc = − 3j

4 and the realization (2.13) given
by

j+ = −z2 d

dz
+

3j

2
z j− = d

dz
j0 = z d

dz
− 3j

4
(3.37)

we find

H1 = 9
4ωj + ωj0 + gj+ + (3j + 2)gj− + 4gj0j−. (3.38)

The above study shows the real importance of those nonlinear structures we have put in
evidence in connection, here, with quantum optical models. Let us finally notice that another
application of nonlinear algebras has recently appeared [33] in the context of the Calogero–
Sutherland model [34].
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