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Abstract. We study realizations gfolynomialdeformations of the/(2, )i)-Lie algebra in terms

of differential operators strongly related to bosonic operators. We also distinguish their finite- and
infinite-dimensional representations. The linear, quadratic and cubic cases are explicitly visited but
the method works for arbitrary degrees in the polynomial functions. Multi-boson Hamiltonians are
studied in the context of thesaonlinear Lie algebras and some examples dealing wjttantum
opticsare pointed out.

1. Introduction

Lie groups and algebras [1] are of great importance in quantum physics [2]. In particular,
they are associated with symmetry properties of physical systems and always improve the
understanding of many applications. Infact, such developments are mainly bdsedhohie
algebras, but it has become increasingly evident that there is no physical reason for symmetries
to be only linear ones, leading to the observation that Lie theory may therefore be too restrictive.
Very recent studies have visited important classasofinearsymmetries. Among these, let
us only mention the nonlinear finit€-symmetries [3] described monlinear Lie algebrathat
we define as ‘generalizations of ordinary Lie algebras containing different order products of the
generators on the right-hand side of the defining brackets without violating Jacobi identities’
[4]. Another recent approach [5, 6] has considered nonlinear angular momentum theories
fundamentally developed from nonlinear extensions of the (real §of %) of the) complex
Lie—Cartan algebrai;. These two contents [3,5, 6] are not independent [7] and cover an
important set of contributions on the correspondiggresentationsf nonlinear Lie algebras
[4-14] where, more particularhyguadratic and cubic nonlinearities have been extensively
handled.

The main purpose of this paper is to discuss and put forward possible realizations of
nonlinear algebras kgifferentialoperators, such representations also being of primary interest
in connection with physical applications described by typical quantum Hamiltonians. As an
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example, we choose to stugplynomialdeformations of the lineas (2, )%)-algebra written
in the form

[Jo, Ji] = £Jx (1.1)
[J+, J-] = P(Jo) 1.2)

where, as usual/. are the well known raising (+) and lowering-) operators (physically
important in the angular momentum theory [15]) ahdthe diagonal onepP (Jy) being a
polynomial function ofJy with a generally finite degrea. Particular nonlineasi (2, i)-
algebras have already characterized physical applications in quantum mechanics [3] but also in
Yang—Mills-type gauge theories, inverse scattering, conformal field theories [16, 17], quantum
optics [18, 19], etc.

The interest of realizations in terms of linear differential operators is evidently stressed by
the fact that position and momentum operators are strongly related to linear combinations of
(harmonic) oscillator creatiofz ') and annihilationg) operators so that the so-calledsonic
realizations of nonlinear Lie algebras appear as very richinformation. Letus here only recallthe
Heisenberg algebra characterized by the nonzero commutation relation (in a one-dimensional
space)

d
— =1 1.3
|:dx ’ xi| (2.3)
equivalent to the oscillator algebra
[a,a"] =1 (1.4)
with the corresponding number operator given here by the dilation operator
d
D=x—. 1.5
X (1.5)

Such bosonic representations have already been studied for a long time in connection with
(linear) Lie algebras [20, 21] but we want to tackle nonlinear ones as already mentioned.

The contents are then distributed as follows. In section 2, we propose a differential
realization of the three generato(d., Jy) satisfying the typical commutation relations
(1.1) and (1.2) and we discuss three specific polynomial contexts: the (trivial) linear case
(section 2.1), the quadratic context (section 2.2) which is a first nontrivial (nonlinear) case
with several physical motivations [4, 8, 10—13] and the cubic case (section 2.3), another specific
finite W-algebra once again very well visited [5-7, 9, 13, 22, 23] in connection with different
physical applications. Animportant discussion will also take place in that section: we want to
distinguish the possiblinite-dimensionatepresentations of the different algebras. Moreover,
we will only be interested in realizations which could be handled in the future, formal ones then
being discarded. In section 3, as an application, we visit families of multi-boson Hamiltonians
[19] and point out some of them admitting typically such nonlinear Lie algebras as spectrum
generating algebras.

Our units are taken with the constanéqual to unity.

2. Differential realizations of the generators

Let us realize the nonlinear algebra (1.1), (1.2) in terms of differential operators depending on
a real variablec. Such commutation relations suggest that these operators have the following
forms:

N v 1
. = xVF(D) J.=GD) 4 Jo= 1 (D+0) (2.1)
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wherec is a constantD is given by equation (1.5) andl = 1, 2, 3, . ... Besides the starting
property (1.3), let us mention the following identities and notations which are very useful in
order to manipulate the above operators:

[D,x¥] = N xV ﬂD —Nﬂ (2.2)
K= dx™’ T dxWN '
and

v, P . (D+N)!

vt =Ty = 50 =

av = D!
N =Tl -j)=—"—. 2.4
Ty Jl.:!)( 7) (D — N)! @4)

If the relations (1.1) are easily satisfied, the one given in equation (1.2) asks for a general
constraint written as

(D — N)! D!

If P(Jo) in equation (1.2) is a polynomial of degre® in Jy, we evidently should have
A =deg,(FG)+N — 1.

Here we want to point out that the following transformation
Je=JU J_=U"1 Jo = Jo (2.6)
defines an automorphism of the realization (2.1Y/ifis a function of D only. Such an
automorphism allows us to simplify the functio#®¥ D) and (or)G(D). In the following,
we exploit this freedom without loss of generality. It is thus understood that all the realizations
explicitly presented here will be valid up to an automorphism of the form (2.6). So, let us fix
our choice on

GD)=1 (2.7)
in the constraint (2.5) and let us apply it to specific cases which are particularly meaningful
in connection with physical applications [3, 4, 16, 17]: we want to successively treat the three

cases of thelifear) algebras/ (2, i) and the fionlinea) quadratic and cubic deformations of
this structure.

F(D — N)G(D — N)L - F(D)G(D)(D+—N)! —P <%(D +c)> . (2.5)

2.1. The linear algebrai (2, %)

This case corresponds to the well known example where
2
P(Jo) =2Jo = ﬁ(D +c) (2.8)

subtending all the very important consequences of the angular momentum theory [15] and its
finite-dimensional representations but dealing with a specific basis other than the one in which
we are interested here. Let us also mention a recent study [21] on this case which can be
strongly related to ours up to specific periodic conditions imposed in that work [21]. Here the
function F (D) is chosen as

" N2(D + N)!
wherei; anda, arex-independent parameters. The constraint (2.5) with the functions (2.7)
and (2.9) leads to

Mt+Ar=2c+N

F(D) = (D +X)(D + 1) (2.9)
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so that in terms of a single paramel€21] we get
N N
11=c+5+k and A2=c+§—k. (2.10)

Then the discussion of the functiéi( D) = (2.9) starts with differentv-values but by limiting
ourselves to nonsingular realizations of the three generators (2.1).

Here, only the value®y/ = 1, 2 are admissible ones in that sense and we immediately get
that, forv =1,

Ar=2(3—-0)= F(D)=—-(D+2) (2.11)
and, forN = 2,
A=+ c=3=F(D)=-1 (2.12)
Let us now give these explicit realizations in the two cases: we respectively have
d d d
+ = — — + = — = — + .
J. X (x I 26‘) J o Jo=1x o e (2.13)
and
x2 d? 1 d 1
Jp=—— J=— Jo==(x—+=]. 2.14
4 dx? 072 (x dx 2) ( )

Let us also point out that, if we ask for finite-dimensional representations, we have to
considerP (n) (the (n + 1)-dimensional vector space of polynomials of degree at masthe
x-variable) and to preserve it under the action of the generator particular. This requires,
in particular, that

Jox" = F(mx"™" =0 (2.15)
and thus that

Fn)=Fmn—1)=---=Fn—N+1)=0. (2.16)
Only the caseV = 1 with c = —5 is permitted, the corresponding generators (2.13) being

already extensively used in the construction of quasi-exactly solvable equations [24, 25].

2.2. The quadratic algebra
If we require (with arbitraryy;, i = 1, 2, 3 up toas # 0)
P(Jo) = a1 +aado + azJ@ (2.17)

we are concerned with an already well-visited nonlinear algebra [8, 13] with specific physical
interests [4] ifa; = 0, ap = 2, a3 = 4a or with a W ?-algebra [3] ifez = 0 andas > 0. Let
us apply our considerations and search for functions

D!
F(D)=—-d—— (D+A)(D+X2)(D+ A 2.18
(D) D+ V) ( ( 2)( 3) (2.18)
satisfying the condition (2.5) with the entries (2.7) and (2.17). This leads to the information
3N 3N
d=2 M Ao ths = o2 4304+ 20
3N3 203 2 (2.19)
N? 3N? 3N '
Mhg*hadg+hohs = +3cN + %2 2NCO2 | 324 3n2%

203 o3 o3
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Due to the specific form of our functions (2.18), we have only three admissible values
N=1223 WegetforN =1

o3 3 1 3(X2 €
== A =1 A= —cH+ -+ +_
3 ! 272" 4 4as 2
3 1 3
ha= e+ 4R ¢ (2.20)

2 3
e:<—3c2+3c+%+9%—%<§—3c>—1zﬂ>

40[% a3 \ 2 o3
so that the corresponding differential realization is
d
h=Dtc  J=— Jo = —a—;x(D+A2)(D+A3). (2.21)
X
It will correspond to finite-dimensional representations of dimengiof 1) iff A, = —n or
)»3 = —n.
For N = 2 we have
d=2 =1 =2  az=3(c+2 (2.22)
24 a3
and the realization writes
1 d2 a3 o a2
Jo==(D+ J=— Jy=—— D+3c+3—). 2.23
0 2( C) dx2 + 24)6 < 053) ( )

leading to infinite-dimensional representations only.
Finally, for N = 3, we have

o
=3 =1 Ay =2 A3 =3

81 59
o 2 1 . 1, 1 2 (2.24)
— = ——=Cc+ = — === =c+ —
o3 37 3 as 9 9 27

giving, once again, infinite-dimensional representations through the differential realization
1 d? o3
Jo==(D+ J_=— Jr=——x3 2.25
0 3( C) d_x3 + 81x ( )
Let us end this section by mentioning that the realizations and representations of the
quadraticalgebra [4] characterized by

P(Jo) = 2Jo + da ¢ (2.26)
are readily obtained by fixing the as already specified.

2.3. The cubic or Higgs algebra

The Higgs algebra [22] has also been intensively exploited up till now, in connection with
either specific models [13, 18, 22, 28} through technical relations wit -algebras [3, 7] as

well as with the study of its irreducible representations [5, 6, 9]. Here it is characterized by the
polynomial function

P(Jo) =2Jo+88J3 (2.27)
B(# 0) being very often interpreted as a deformation parameter. The funcHony
corresponding to the previous expressions (2.9) and (2.18) take the form

D!
F(D)=—-f W(D +A1)(D +A2)(D + A3)(D + Ag). (2.28)
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We get the information

2B
:m MtAr+Az+ g =4c+2N
N2
A1ho + A1hg + Aokg + Arha + Aok + Aghs = N2 + 6¢N + 6¢% + % (2.29)
2 2 s, cN? 1 g
AAoA3 + AqAoAg + AqA3hg + Aodghg = 2c N+ 6¢“N +4c° + 7 + ﬁN

and have to discuss the cagés= 1, 2, 3 and 4. Here are the results ivr= 1:

ra=1 A—1+ +1 1+ 4c — 4c? 2
o T2 P (2.30)
5 )

1 1
Az=—tc— = |1+4dc—4c2 - = A =2
3 2 C 2\/ ,3 4 C,
N=2
a=1 Ao =2 (2.31)
1 3 1 8 3 1 8
f c=2 Aa=—+= [7T—= A==—2=[7T—— 2.32
=3 3=375" 73 ‘=370 T8 (2.32)
1 1 4 | a4 | 4
or c==-+=[3—— ra=1+ [3—— Aa=2+ |3—— 2.33
¢ 2 2 ﬂ 3 :3 4 /3 ( )
1 1 4 4 4
or c==—-2-/3-——- Aa=1— [3—— Aa=2— [3——, 2.34
¢ 2 2 ﬂ 3 ,3 4 /3 ( )
N=3
a=1 Ao =2 r3=3 Aa = 4c (2.35)
if c=0=2x=0 p=2 (2.36)
o c=3=hs= B=2 (2.37)
or c=1=)=4 B=2, (2.38)
N=4
T i 3=3 ‘ (2.39)

Finite-dimensional representations are only possiblé\fer 1 and 2. IfN = 1,1, = 1 and
A2 = —n are fixed but.z and)4 can take three different sets of values in correspondence with
well definite values of as follows:

Rl 1 n Rl

1 n
if = —— A= —— —+ — M=———— — 2.40
€T3 3T 27272 4T 272772 (2.40)
with
2\ 1/2
R1:(1—2n—n2——> (2.41)
B
. n 1
if c=——=+=-R, A3=—n+R2 )\4=1+R2 (242)
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with
1\Y2
Ry — (_nz o _) (2.43)
B
) n 1
if ¢c= —5- ERZ Mm=-n—Rs A=1—R>. (2.44)

Let us point out that these three families correspond to the three ones obtained in the angular
momentum basis [5] associated with= 2;.

If N=2,11=1,), =2andr3 = —n, A4 = —n + 1 are determined so that we get fixed
values forc andg given by

n 4

I S A my

leading to supplementary representations recently obtained in [6].

The method developed here can evidently be applied to any degree of nonlinearities in the
polynomials characterizing equation (1.2) depending on specific questions and applications we
want to consider. In conclusion of this section, let us consideg tieformatioris, (s/(2, :))
of s1(2, N) which corresponds to the commutation relation (1.2) written on the form

[J+, J-] = [2J0] (2.46)

where the bracket refers to the usual notation [26]

(2.45)

—X

=11 g=¢ (2.47)
q9—d9
leading to
2 1 2

wherey characterizes the deformation parameter of giantumalgebra. In our differential
realization (2.1) with the condition (2.7), the new functidngD) take the form

D! h (%(D+c)+y) (2.49)

FD) = =307, o+ nn©

also rewritten [27] as
1 Dl X 2y (2D +2c + N\?
FD)=——F>———— 1+ ——— . 2.50
(D) 2sh2y (D + N)! g( ( N2k + ) ) ) (2.50)

No admissible cases can thus be discussed and all the representations are infinite-dimensional
(as expectedy; still being a free parameter.

3. Some examples from quantum optics

A very recent result [18] concerning a location of fundamental supersymmetry [28] in multi-
boson Hamiltonians [19] suggests to learn if our differential approach can be useful through
the exploitation of nonlinear Lie algebras seen as spectrum generating algebras [29] of these
Hamiltonians as it was the case in quantum optics in particular.

We thus propose to consider the following family of Karassiov—Klimov Hamiltonians [19]
given by

H= wlaIal + wza;az + g(aI)Sag + grai(a;)’ (3.1
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where 0< r < s, w1 andw; refer to angular frequencies of twodependenharmonic
oscillators characterized by annihilatian (a,) and creatiomﬂ, a;) operators verifying the
usual Heisenberg relations (1.4).

With the definitions

Ro= . -]l:s (raIal + sa;az) = o (rNy+sN3) (3.2)

Jo= %(ajal — alay) Jo = (a})’dl J_=daja) (3.3)
the Hamiltonian (3.1) becomes

H = (01 +w2)Ro + (w15 — wor)Jo+ gJs + gJ- (3.4)

and we already notice that
[Ro, Jo] = [Ro, J&] =0 [Jo, J&] = £Jx (3.5)

for arbitrary values of ands. The Hamiltonian (3.1) suggests an infinite-dimensional basis
{in1,n2) n1,np, = 0,1, 2,...} for which the eigenvalues oty (noted by; in the following)
are of the formj = (rny +sn2)/(r +s).

3.1. Towards the (cubic) Higgs algebra

In connection with the results [18] enhancing the Higgs algebra as a spectrum generating
algebra of the Hamiltonian (3.4), we have to add to equation (3.5) the requirement that the
commutator J., J_] is up to a renormalization of ., of the form (1.2) with (2.27). It was
realized in [18] that this is possible only fer= s = 2. Here the commutator reads

[Je, J_] = —64J3 + 8Jo(2R5 + 2Ro — 1). (3.6)
A comparison of (2.27) with (3.6) further indicates that the paramgtdrould be of the form
4
= =02,1,... 3.7
P 4j2+4j -2 IR S

which, we note in passing, is very similar to the condition (2.45) obtained in our classification
of finite-dimensional representations of the Higgs algebra.

After calculations, one can show that, out of the four caées 1, 2, 3, 4, only theN = 1-
andN = 2-contexts (see (2.30)—(2.34)) are possible.

We first discuss the three solutions associated with the conteett NV = 2:

1
if c=1 r3=3+1(8j2+8j+3)2 Ag=3— 13 (3.8)
we have
J 1 D+1 J & J 2(D+x3)(D+3—13) (3.9
= — —_ = — + =X —_ .
0 > > a2 3 3
if c=j+1 A3=2j+2 Ag=2j+3 (3.10)
we obtain
1 . d? 2 . .
Jo=§(D+]+1) J_:F Je=x(D+2j+2)(D+2j+3) (3.11)
X
if c=—j A3 = —2j A=-2j+1 (312)
we get
1 . d? 2 . .
Jo=2(D—j) J=— = x%(D —2j)(D —2j +1). (3.13)
2 dx
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Only the realization (3.13)—which exactly corresponds to the discussion leading to egs.
(2.45)—is of finite dimension while those given by equations (3.9) and (3.11) are infinite-
dimensional ones.

Let us now insert such realizations inside the Hamiltonians (3.4) witld&e conditions
w1 = wy = w,r =s = 2andg = gin order to determine if the above three contexts are or are
not typical ones of thénear algebras/ (2, %) or of powers of its generators already obtained
in equations (2.13) and (2.14).

With the finite-dimensional realization (3.13), we readily find the corresponding
Hamiltonian of the form

. 4 d2 . 3 d . . 2
H=20wj+g(1+x")—+2(1—-2j)gx"— +2j(2j —1)gx*. (3.14)
dx dx

The generatord.. in (3.13) are nothing else but tkecondpower of the correspondirmear
sl(2, N)-generators (2.13). The Higgmd si(2, N) algebras are simultaneously spectrum
generating algebras of this application developedRya 1)-dimensional space. This context
exactly corresponds to the Karassiov—Klimov model and its deduced supersymmetric features
[18]: the double degeneracy of the energy eigenvalues is clearly explained here through the
above powers of the lineai (2, iR)-generators as well as the possible construction of two
supercharges [30].

Up to the fact that the realization is infinite dimensional, the results (3.10) and (3.11) lead
once again to the conclusion that we are dealing with second powers of the generators of the
linearsl (2, M)-algebra, this context being characterized by the Hamiltonian

2
H=2wj+g(1 +x4)% + (4 + 6)gx3% +(4j2+10j +6)gx2. (3.15)
X

The third case corresponding to equations (3.8) and (3.9) is more interesting. Indeed, we

get the Hamiltonian

2
H=2wj+g(1 +x4)d—2 +4gx3£ — (2j2 +2j — :—3> gx2. (3.16)
dx dx 2
Here we notice that our raising operatbr cannot be related to the generators of the linear
sl(2, M) algebra. Such a family of applications is thus characterized by the (cubic) Higgs
algebra seen as the spectrum generating algebra of interest, this context being typical once again
of infinite-dimensional realizations. Moreover, let us point out that this Hamiltonian (3.16) is
a Hermitean operator while the previous expressions (3.14) and (3.15) were not.

The above discussion can evidently be completed byMhe- 1-context through the
values (2.26) withg given once again by equation (3.7). Here also, we have found (finite-
or infinite-dimensional) realizations entering a (non-Hermitean) Hamiltonian admitting the
Higgs algebra as spectrum generating algebra without any connection with the linear case or
its powers. It reads

RS d¢? 1 1.9 d

H =2wj +16gx*— +64g(c+ Dx®— +g (1+16(6c2+6c — = j2 — Zj+— | x?) —
wf + 10875 5+ Bgler Dty g( (c 21 7317 2)Y )
+32gc(2c* — 3j2 —1j+ Hx (3.17)

and we notice that it includes third orders of derivatives as well as complex energies so that it
is not appealing in connection with physical applications.

In conclusion of this section, let us point out that the above discussion gives us some
academicgesults ensuring the role of spectrum generating algebras played by the Higgs algebra
in the models characterized by the Hamiltonians (3.14)—(3.17) but, through their explicit forms,
we immediately see that such Hamiltonians cannot lead us, in the infinite-dimensional cases,
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to Schibdinger-like equations which are easy to handle. For such reasons we want to exploit
another Hamiltonian (3.4) as given in the following section.
3.2. Towards the quadratic algebra

Instead of- = s = 2, let us study the relations (3.1)—(3.5) whesa: 1, s = 2, resulting in the
Hamiltonian

H = (w1 +w2)Ro+ 2wy — w2)Jo+gJs +gJ_ (3.18)

Jo=3(N1—N2)  Ro=3(Ni+2Ny). (3.19)
Here the supplementary commutation relation becomes

[Je, J-]1 = P(Jo) = 12J2 — 3Ro(Ro + 1) (3.20)
so that we have to consider the polynomial (2.17) for

a1 =-3j(j+1 a; =0 oz =12 (3.21)

Let us stress that this quadratic algebra is thug(%l-algebra [3] of special interest, appearing
here, in connection wituantum optical models

After calculations, it appears (as for section 2.2) thatNhe 3-context is impossible but
the othersV = 2 andN = 1 are possible and lead to three different differential realizations.
WhenN = 2,
if c =—j, we get

Jo= }(D - J_ = & Jr = —}xz(D - 3j) (3.22)
2 dx2 2
and ifc = j + 1, we obtain
JO:}(D+j+1) J_ =d—2 J+=—1'x2(D+3j+3). (3.23)
2 dx? 2
In the caseV = 1, the parameter is arbitrary and we get
.2 .
Jo=D+c L:% J+=—4x<D2+(3c+%>D+302—%—%).
(3.24)

Choosing agaim; = w; = w andg = g, the Hamiltonian (3.18) leads to three specific
models in correspondence with the choices (3.22)—(3.24). We respectively get

Hy = gwj +g%22 + E(wx - gxs)% + ggsz (3.25)
Hy = %w(l +5j) +gdd—; + %(wx - gx3)% - %g(3j +3)x? (3.26)
and
Hs = w(c+2j) — 4gx3%22 + (g +wx — 4g <3c+ g) x2> %
~ag (3 - E-U). (3.27)

None of these Hamiltonians is Hermitean Bljtand H, are P T -invariant so that they have real
spectra[31]. This eliminated; for evident reasons and we have to enlighten the characteristics
of H; and H- in order to determinéhe Hamiltonian which has to play the interesting role in
quantum optics.
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Let usfirst establish through conventional quantum mechanical methods that the stationary
Schibdinger equation corresponding 8 is of the form

G »
(—5@ + v1<x>) () = Eg My (x) (3.28)

1 2 j 1
vl(x>=—x6—ix4+<‘“ —3_f—§)x2—ﬁ<3j——> (3.29)
8

with

2
while the one corresponding 18, is characterized by the potential

2 .
Vo(x) = i)66 LA <3C;—g2 + SZJ + g) x?— % <5j + %) . (3.30)
We thus recover two particular forms of the famous potential of degree six, typical of quasi-
exactly solvable equations [24, 25, 32] now appearing in quantum optics. Due to these results
we are able to calculate a certain number of eigenvalues of the spectrum as well as their
eigenfunctions.

More precisely, by applying the techniques of [25, 32] to the sextic oscillators above,
we notice that only the potentidf (x) gives a quasi-exactly solvable Soédinger equation
leading to the existence o%j[] + 1 exact solutions (where] refers to the entire part of) and
corresponding to real energy eigenvalues whose first ones are

. , . 1
j=0 Eo=0 ]:% Ei=w ]:% Ezzga):l:%(a)2+8g2)2

P = 5,4 1(y2 23
j=1 E3 =30+ 5(0°+24¢g%)2 efc.... (3.32)

This leads to the conclusion that, with the differential realizations of the generators of the
quadratic Lie algebra (3.20), the Scbdinger equation (3.28) with (3.29) is the only one
associated with a realistic quantum optical model. Ageondpoint, we would also like to
comment about the supersymmetric properties of the Hamiltonian obtained above. For this
purpose, let us consider (3.25) fpe= 0 and, thus, for the eigenvalug = 0, it simplifies to

d? 1 1) 3 w? 1)
H=—— —xf+_—x*+(> - — | x?— —. 3.32
1T 2 16 8 (4 16g2> * (3.32)
Interestingly, this operator can be expressed in terms of a superpotentid{28]
d? , dwp

H+ = H]_ = @ - Wl dx (333)
with
1, o
= T34+ . 3.34
Wi(x) AR (3.34)
The superpartnell_ of (3.33) is given [28] by
d? dw;
H =— - W+ _— 3.35
dx? L dx ( )
and surprisingly appears to be relatedg
H_ = Hs|,—o. (3.36)

It shows thatits nonquasi-exactly solvable contextis strongly relatedmoiistngfundamental
energyEy = 0 and that it does not correspond to the expected results of the quantum optical
model. Let us also point out that these superpartners indicate that (onkyXf@, we describe

here arexactsupersymmetry [28].
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A final third property that we want to stress is related to the realization (2.13) of the
linearsi(2, N): we have also noticed that the interesting Hamiltonian (3.25) is once again a
simple function of the three generators given in equation (2.13) but expressed in terms of a new
variablez = x2. We thus conclude that the linedx2, %) as well as quadratic algebras we are
considering (this latest way being, by far, more straightforward) are simultaneously spectrum
generating algebras for the model under study. Wiﬂa—%’ and the realization (2.13) given

by

d 3j d d 3j
= —2 + — = — n—7— — —
J+ Tttt =% Jo=z25-=7 (3.37)
we find
Hy = dowj +wjo+gj. + (3j +gj_ +4gjoj-. (3.38)

The above study shows the real importance of those nonlinear structures we have put in
evidence in connection, here, with quantum optical models. Let us finally notice that another
application of nonlinear algebras has recently appeared [33] in the context of the Calogero—
Sutherland model [34].
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